Under review as a conference paper at ICLR 2025

MEXMA: TOKEN-LEVEL OBJECTIVES IMPROVE SEN-
TENCE REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-lingual sentence encoders (CLSE) create fixed-size sentence represen-
tations with aligned translations. Current pre-trained CLSE approaches use
sentence-level objectives only. This can lead to loss of information, especially for
tokens, which then degrades the sentence representation. We propose MEXMA,
a novel approach that integrates both sentence-level and token-level objectives.
The sentence representation in one language is used to predict masked tokens in
another language, with both the sentence representation and all tokens directly
updating the encoder. We show that adding token-level objectives greatly im-
proves the sentence representation quality across several tasks. Our approach out-
performs current pre-trained cross-lingual sentence encoders on bitext mining as
well as several downstream tasks. We also analyse the information encoded in our
tokens, and how the sentence representation is built from them.

1 INTRODUCTION

Creating general-purpose multilingual embeddings has attracted significant attention from the re-
search community in recent years, driven by the growing need for efficient and effective cross-
lingual representations. Cross-Lingual Sentence Encoders (CLSE) create fixed-size sentence rep-
resentations that are able to capture the relevant information in a sentence, and are aligned across
languages. By capturing relevant sentence information in a shared multilingual space, these aligned
representations enable efficient comparison and retrieval based on distance measures, thereby facil-
itating their effective utilization in various downstream applications.

Current CLSE (Duquenne et al., 2023 [Feng et al., |2022) typically build upon pre-trained encoders,
often language models (Conneau et al.,2020; |Devlin et al.,|2019)) or translation models (NLLB Team!
et al.|[2022). These pre-trained encoders have been trained using objectives that focus on individual
words or tokens, i.e. token-level objectives. Examples of such objectives include unmasking, where
the model is required to predict each token individually, and all predictions are used to update
the encoder directly. However, Muennighoff et al.| (2023); |[Hu et al.| (2020) show that pre-trained
encoders without objectives that consider entire sentences, i.e. sentence-level objectives, do not
create good sentence representations. This means that CLSE need to train using sentence-level
objectives, in order to effectively capture the relevant information of the sentences.

Although CLSE start from encoders pre-trained with token-level objectives, they are commonly
trained with sentence-level objectives that only update the encoder through the sentence represen-
tation (Duquenne et al., [2023; [Feng et al.| 2022} |Yang et al.| 2019} |Artetxe & Schwenk, [2019a),
without any objective for each token individually. We hypothesize that token-level objectives should
be kept during the training of CLSE, coupled with the sentence-level objectives, to better update
the encoder and improve sentence representation quality and alignment. The intuition is that only
using sentence-level objectives leads to a degradation of token level information, especially lexical
information, which in turn can impact the sentence representation.

Recently, there have been approaches exploring the use of both token-level and sentence-level objec-
tives for better sentence representations. In DAP (Li et al., 2023), the token-level objective is only
used to update the token representations in the encoder, without influencing directly the sentence
representation. In RetroMAE (Xiao et al.| 2022)), the tokens are not directly updated with the same
token-level objective as the sentence representation.
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To effectively combine token and sentence-level objectives, we propose MEXMA, a new approach
that uses the sentence representation in one language to predict masked tokens in another language,
and uses both the sentence and tokens’ information to update the encoder. This token-level objective
is combined with a sentence-level objective to enforce sentence alignment across languages.

Our approach outperforms state-of-the-art pre-trained cross-lingual sentence encoders, namely
LaBSE and SONAR, on several key tasks including bitext mining, classification, and pair classi-
fication. Specifically, we report notable gains on the xsim++ benchmark computed over the FLO-
RES200 test set, where MEXMA achieves an error rate of 9.6%, surpassing SONAR’s 12.1%. Addi-
tionally, in classification tasks evaluated on MTEB and SentEval, MEXMA achieves an accuracy of
65.4% compared to SONAR’s 63.0%. The larger supervision in MEXMA enables training smaller
models with better alignment than LaBSE (/2 x) and close to SONAR’s performance (=3 x).

Our main contributions are:

* We introduce a novel architecture leveraging both sentence-level and token-level objectives
outperforming current approaches.

* We perform ablation studies that show the impact of token-level objectives on the sentence-
level representations performance.

* We provide an extensive analysis of the inner working of our model, by analysing its to-
kens’ contents, and the way the sentence embedding is built. We show that as a byproduct
of our training, individual tokens are also well aligned across languages.

* We show that our approach can also be coupled with existing alignment approaches, specif-
ically contrastive learning, and improve its quality.

¢ Our code and model are available here: HIDDEN FOR ANONYMITY

2 RELATED WORK

Sentence embeddings have been well studied in the last decade. Initially, recurrent networks were
trained to predict previous and next sentence (Kiros et al.l [2015) or sentence entailment (Conneau
et al., 2017). Universal Sentence Encoder (Cer et al., 2018)) trains a transformer network on both
tasks. Reimers & Gurevych| (2019) propose to continue the training of a BERT model to include a
sentence-level objective. These initial works have been extended to multilingual settings, to capture
the relevant information in the sentences, and to have aligned representations across languages.
These new approaches are called cross-lingual sentence encoder. We describe those works next.

UPDATE VIA SENTENCE REPRESENTATION Most current cross-lingual sentence encoder ap-
proaches only update their encoder via the sentence representation objective, without having any
token-level objective in the output of the encoder that would update each token individually (Guo
et al.,2018; Yang et al.,2019; Feng et al., [2022} |Artetxe & Schwenk, |2019a; Duquenne et al., 2023
Heffernan et al., [2022). They are most commonly based on contrastive learning (Hadsell et al.,
2006) methods, that aim to reduce the distance between positive pairs (translations) and increase
the distance between negative pairs (non-translations) (Guo et all 2018} [Yang et al., [2019; [Feng
et al.,|2022). Notably, LaBSE (Feng et al.,|2022)) uses the contrastive loss, with the additive margin
softmax approach of [Yang et al.| (2019). Non-contrastive approaches reduce the distance between
positive pairs (translations) only, being prone to collapse. A common solution to collapse is to use
an auto-regressive decoder to prevent it. For CLSE, it is common to use translation (Artetxe &
Schwenkl 2019a; Duquenne et al.,|2023)) with a fixed-size sentence representation after the encoder
(bottleneck), assuming that a model can translate a sentence into many languages only if a good
sentence-level conceptual representation is learned. The bottleneck, however, prevents gradients
from the decoder to directly update the individual token representations of the encoder, which we
hypothesize leads to a degradation of token level information and consequently of the sentence rep-
resentation. Our method also uses a sentence representation as context for the unmasking, but allows
direct token-level gradients to propagate to the encoder token representations.

UPDATE VIA SENTENCE AND TOKEN REPRESENTATIONS Recent approaches (Li et al., 2023
Xiao et al., 2022 [Wei et al.| 2021} [Fan et al.}[2022) have shown that combining token and sentence
level objectives can improve sentence representations. RetroMAE (Xiao et al., [2022), is an Infor-
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The car is red. El coche es rojo.

Figure 1: MEXMA architecture. Given two translations, we create two views for each, a masked
and a clean version (symmetrical architecture), and use the sentence representations from one lan-
guage to unmask the other (cross-unmasking). We align the clean sentence representations via the
alignment loss, and increase the usage of the space with the KoLeo loss.

mation Retrieval method that utilizes fixed-size sentence representations to guide token unmasking,
demonstrating its effectiveness in enhancing sentence representation quality. The encoder itself is
only updated by its own MLM loss with light masking, and via the gradients coming from the sen-
tence representation, but not from the direct token-level gradients of the heavy unmasking with the
sentence representation as context. The masking in the encoder input forces the sentence represen-
tation to not be built from the full sentence, which is not ideal. Wei et al.| (2021)) combines MLM
with the contrastive loss. However, the alignment between sentences is performed on masked sen-
tences, and the unmasking is not done with a cross-lingual sentence context. DAP (Li et al., [2023))
proposes to jointly align tokens and sentence representations. It performs unmasking with all tokens
of the other language as context, which means it updates the encoder with each token individually.
However, it relies exclusively on the contrastive loss to update the sentence representations, and the
sentence representation is not used to perform the token unmasking. In our work, we show that
sentence and token-level objectives can be much more intertwined, with both individual tokens and
the sentence representation updating the encoder, and each other, leading to improved performance.

Detailed diagrams of the described architectures are provided in

3 METHODOLOGY

We propose MEXMA, a novel multilingual alignment technique based on both token-level and
sentence-level objectives. The goal is to create a sentence representation that is able to encode the
syntactic, semantic and lexical information in a sentence, with representations well aligned across
languages. To achieve this goal, inspired by monolingual masked auto-encoding techniques (Xiao
et al., 2022), we use the sentence representation in one language to unmask the tokens in another
language, updating both the sentence and individual tokens. This also forces the sentence rep-
resentation to encode the relevant parts of the sentence. Using masking also allows us to use a
non-contrastive loss to align sentence representations, since it prevents the collapse. Both sentence
and token-level objectives are used to improve the quality of the sentence representation. Our archi-
tecture is depicted in and is composed of several components that we describe now. For
the explanation, we refer to inputs, models and outputs that have no masking as clean, and masked
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for their masked counterparts. Additionally, we consider two languages, language .4 and language
B, which are associated with the sentence representations S 4 and Si (from the clean encoders).

THE CROSS-UNMASKING To ensure that our sentence vector captures the meaningful informa-
tion of the sentence, we mask a significant portion of the input tokens in language .A. This makes it
challenging for the encoder and the MLLM head to recover the missing tokens without any additional
context. To overcome this challenge, we provide the unmasking head with the sentence vector Sj,
derived from the clean sentence in language B. This forces the model to leverage the information
in S to predict the masked tokens in language A. By doing so, we encourage the sentence vector
to capture the essential information of the sentence. Furthermore, by alternating languages, we en-
force the sentence vector to encode information that is useful across languages. We formulate this
component into a symmetrical cross-entropy loss (CE), applied over the outputs of the encoders:

Lonim = CE([S, A], A) + CE([Sa, B, B),

where A and B are the outputs of the masked encoders without the CLS embedding, A and B the
masked tokens’ targets, and [ X, Y] represents the concatenation of X and Y.

THE ALIGNMENT LOSS The cross-unmasking generates an implicit alignment due to the switch-
ing of languages to perform the unmasking. However, as is, that implicit alignment does not strongly
enforce the same sentence representations in two different languages to be close in the embedding
space. Following SONAR (Duquenne et al., [2023), to further reinforce the spatial proximity of se-
mantically equivalent sentences across languages, we use an additional non-contrastive alignment
objective. The two losses, unmasking and alignment, complement each other to provide both aligned
and meaningful vector representations of sentences in multiple languages. We formulate this com-
ponent as a Mean Squared Error (MSE) loss between sentence representations:

‘Calignment = MSE(SA7 SB)a

THE SYMMETRICAL ARCHITECTURE To align all languages and maximize data usage, we
adopt a symmetrical approach that unmasks the tokens of language A with S, and vice versa,
simultaneously. We thus create four instances of the encoder (with shared parameters). For each
language, we have two versions of each sentence: one heavily masked and one clean. This allows us
to generate two clean sentence vectors, S 4 and Sg, which is essential for aligning representations
between languages. A non-symmetrical approach with only two encoders (one per language) would
not produce the desired alignment as it would force the model to align a heavily masked sentence
vector with a clean one, which is not ideal.

THE KOLEO LOSS In preliminary experiments, we noticed that our representations exhibited
more anisotropy than those learned with contrastive approaches. This has been shown to impact the
quality of the representations (Godey et al., [2024). Inspired by DINOv2 (Oquab et al.l [2024), we
employ the KoLeo loss (Sablayrolles et al., 2019) to encourage sentence representations to spread
out evenly in the latent space. The KoLeo loss is based on the Kozachenko-Leonenko differential
entropy estimator (see Beirlant et al.|(1997))). We define below the KoLeo loss, Lk 1.0, fOr a set of
n representations, as well as the symmetrical version, Ly, we use to train our models:

: RN
Ly = EKoLeo(SA) + LKoLeo(SB) with Lgoreo = _E Z log(dn,i)

i=1
where d,, ; = min;jx; || ©; — «; || is the distance between x; and its nearest point in the batch.
Our training loss is a weighted combination of all previous losses:

EMEXJ\IA = [:alignment + B : Enle + v ‘CK

where «, 5 and 7 are hyper-parameters that control the weight of each loss term. To show that
MEXMA can be used on top of existing alignment approaches, we provide, in experi-
mental results when replacing the MSE alignment loss in MEXMA with a contrastive loss.
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Model xsim | | xsim++ | | BUCC+ | o-xsim | | o-xsim++ | | d-xsim | | d-xsim++ |
DAP - - 98.68 - - 2.90 32.82
SONAR 0.09 12.08 98.25 0.08 11.68 0.04 10.55
LaBSE 0.92 18.65 98.75 0.31 16.21 0.26 14.51
MEXMA | 0.06 9.60 98.93 0.05 9.01 0.02 8.26

Table 1: Results in mining (%). xsim and xsim++ are computed on 81 languages (FLORES200
dataset, X-eng pairs), with o-... columns showing results for 72 supported languages from LaBSE
and d-. . . columns showing results for 34 languages supported by DAP. BUCC is computed with F1
in its 4 languages.

3.1 EXPERIMENTAL SETUP

ENCODER BACKBONE As our encoder, we utilize a modified version of the XLM-RoBERTa
model (Conneau et al.[2020) provided by HuggingFace that uses a more efficient attention (details
in[Appendix A)). Our sentence representation from the encoder is obtained via the CLS embedding
of the last layer, without any further processing.

TRAINING DATA Our training dataset is a subset of the NLLB-200 corpus (NLLB Team et al.,
2022)), which comprises 200 languages. We cover 81 languages, utilizing only publicly available
data, all sourced from Opus (Tiedemann|, 2012). The specific languages used are listed in [Ap-|
We always train using one sentence in English associated with its translation in one of
the remaining 80 languages, as done in SONAR. The dataset consists of a combination of human-
translated and synthetic data, where we attempt to impose a minimum of 15 million sentences per
language. For languages with limited human-annotated data, we supplemented the dataset with
mined data from NLLB (Schwenk et al., 2020; |[Fan et al., 2020; NLLB Team et al., 2022) to reach
the 15 million sentence threshold. Conversely, to ensure that our dataset is somewhat balanced
across languages, for languages with abundant human-annotated data, we capped the dataset at 25
million sentences per language. The datasets used are detailed in[Table 17]

We provide additional details about the parameters and configurations of our model in[Appendix A}

4 RESULTS

To assess the quality and alignment of our embeddings, we evaluate them on a range of tasks. These
tasks fall into two categories: mining tasks and other downstream tasks. Mining tasks measure how
aligned our representations are across languages, while downstream tasks evaluate the generalization
power and overall quality of our embeddings.

4.1 MULTILINGUAL ALIGNMENT THROUGH MINING

We evaluate our model on three alignment tasks: xsinﬂ xsim++ (Chen et al., 2023)), and BUCC
(Zweigenbaum et al.,[2018}2017). Both xsim and BUCC involve retrieving the correct translation of
a query sentence from multilingual datasets. xsim++ adds complexity by introducing hard negatives
in English sentences. Following Heffernan et al.|(2022), we exclude Tatoeba due to limited data and
low-quality translations.

xsim and xsim++ use a margin-based similarity approach (Artetxe & Schwenk,[2019b)), while BUCC
employs cosine similarity. xsim and xsim++ scores are the error rate of misaligned sentences,
whereas BUCC uses the F1 score, evaluated with the MTEB benchmark (Muennighotf et al.|[2023).

BUCC covers German, French, Russian and Chinese. We evaluate our model using xsim and
xsim++ on the FLORES200 dataset, covering the 81 languages supported by our model (listed
in [Appendix C). For fairer comparison, we also report results for the 72 languages supported by
LaBSE, SONAR, and MEXMA (”o-xsim”), and separately for the 34 languages common to DAP
and the other models (“d-xsim”). Results per language are available in[Appendix E].

'"https://github.com/facebookresearch/LASER/tree/main/tasks/xsim
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Model average | SentEval | en zh fr da nb pol

DAP 61.80 78.18 66.35 | 67.46 | 63.76 | 52.27 | 51.58 | 53.03
SONAR | 63.02 85.82 65.63 | 63.13 | 61.88 | 54.01 | 55.59 | 55.09
LaBSE 62.77 85.63 66.75 | 68.69 | 62.05 | 49.53 | 50.76 | 56.00
MEXMA | 65.35 86.38 68.20 | 66.25 | 66.07 | 55.38 | 58.08 | 57.09

Table 2: Classification results, reported as accuracy (%), on SentEval and MTEB (last 6 columns),
averaged across languages.

Model average | en zh fr

DAP 66.01 63.87 | 61.12 | 73.03
SONAR | 69.70 70.73 | 60.80 | 77.57
LaBSE 68.47 69.75 | 61.95 | 73.70
MEXMA | 71.55 74.39 | 62.12 | 78.13

Table 3: Pair classification results, average precision (%), on MTEB, averaged across languages.

The results are shown in[Table ] MEXMA outperforms previous SOTA on all benchmarks, show-
casing improved alignment in our approach. The improvements in xsim and BUCC suggest that our
approach improves the semantic alignment of the embeddings. The large improvement in xsim++
(+2.48% absolute improvement against the previous best model SONAR) also indicates the in-
creased robustness of our model with regard to hard negatives, likely due to handling better lexical

information. For more thorough comparisons using the same data and backbones see|Appendix B.4

4.2 DOWNSTREAM TASKS

To understand the quality of our embeddings and how generic they are, we evaluate them on several
tasks from the MTEB benchmark (Muennighoff et al.| 2023). We report the averaged results for

each language. For the full list of results for every task, see

SINGLE SENTENCE CLASSIFICATION We evaluate our model’s classification performance on
two benchmarks. First, the SentEval suite (Conneau & Kiela, 2018) is used to assess the performance
across various tasks in English. We evaluate on the tasks considered in LaBSE. Second, we evaluate
the multilingual classification capabilities using the available datasets from the MTEB benchmark.
Table 2|shows the aggregated results. We can see that MEXMA outperforms all baseline models on
average, and more specifically gains +2.33% when compared with SONAR.

PAIRWISE SENTENCE CLASSIFICATION We further evaluate on the pair classification task. This
task consists in classifying sentence pairs, e.g. determining if two sentences are duplicates or not.
The metric, as reported in MTEB, is the Average Precision (AP) based on the distance between sen-
tence representations. The results are in[Table 3] MEXMA consistently outperforms all baselines on
average, by at least +1.85%. These results, combined with our single sentence classification results,
suggest that our model can effectively encode the relevant information in the sentence vectors.

SEMANTIC TEXTUAL SIMILARITY (STS) The STS task evaluates the model’s ability to repli-
cate human judgments on sentence similarity. The metric, as reported in MTEB, is the Spearman
correlation based on distance. The results are in We can see that LaBSE outperforms all
other methods, and in particular MEXMA by 0.66%. MEXMA outperforms SONAR (+5.95%) and

Model avg eng zh fr pl

DAP 59.39 | 67.45 | 4531 | 67.74 | 57.06
SONAR | 58.04 | 67.24 | 42.15 | 65.60 | 57.17
LaBSE 64.65 | 70.93 | 47.50 | 74.33 | 65.82
MEXMA | 63.99 | 70.62 | 51.56 | 70.10 | 63.67

Table 4: STS results, reported as Spearman correlation (%), on MTEB, averaged across languages.
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component Xsim | xsim++ | | SentEval ¢
Only sentence-level grads (1) | 0.15 11.37 85.06
+ Token-level grads (2) 0.10 9.67 85.98
+ KoLeo loss 3) - MEXMA | 0.06 9.60 86.38

Table 5: Ablation study of the different components of the model. All experiments are conducted
with the final hyperparameters of the model, as reported in

Model xsim | | xsim++ | | SentEval
Contrastive XLM-RoBERTa 0.13 33.30 85.5
Contrastive MEXMA without MLM token-level gradients | 0.13 12.78 85.86
Contrastive MEXMA 0.12 10.93 85.94

Table 6: Using contrastive loss as the alignment loss in MEXMA.

DAP (+4.6%). The results indicate that the contrastive loss better suits the STS task, given that this is
the only task where DAP is able to outperform SONAR, and where LaBSE outperforms MEXMA.

5 ABLATIONS AND ANALYSES

In this section, we conduct a comprehensive analysis of our MEXMA architecture, examining the
impact of its individual components, how it scales with varying model and data sizes, and its po-
tential to improve other alignment approaches. We also examine the characteristics of the token
embeddings and sentence representations learned by our model.

5.1 MODEL COMPONENTS

In we ablate the impact of having direct token-level gradients in MEXMA. The goal is to
understand the relevance of the gradients that update the encoder: either only from the sentence, or
from the sentence and all tokens. In model @, we have all of MEXMA'’s components, as covered
in without the KoLeo loss. However, the gradients from the unmasking task are only
back propagating through the sentence representations back to the encoder, and are deactivated for
the individual tokens the encoder outputs, i.e. in the £,,;, mentioned in , A/B have no
gradients flowing back to the encoder. This model already achieves results that are competitive with
current state of the art, but does not outperform them. However, if we allow the gradients to flow
through the tokens directly, model (2), we are able to outperform the current state-of-the-art. As
we hypothesized, adding updates on the tokens directly, coupled with the sentence updates largely
improves results across all tasks. Additionally, we also show that adding the KoLeo loss, model (3),
also slightly improves results across all tasks. The ablation on all components of the model, and on

cross-linguality , is provided in[Appendix B]

5.2 CONTRASTIVE ALIGNMENT LOSS

To further assess the improvements given by the direct token updates in MEXMA, and understand
MEXMA'’s scalability to other alignment approaches, we replaced our alignment loss, MSE, with a
contrastive loss (also dropping the KoLeo loss). We used a siamese network with XLM-RoBERTa-
large trained on the symmetric cross-entropy loss (InfoNCE from |van den Oord et al.|(2019)) as the
baseline model, having an architecture similar to LaBSE (Feng et al., 2022). Our training used a
batch size of 1.2k, with the rest of the parameters the same as reported in The results
are presented in[Table 6] Our baseline model performs well on xsim and SentEval but struggled with
xsim++. Switching to the MEXMA architecture without token-level gradients, as done in model (1)
in improved performance, already close to state-of-the-art xsim++ performance. More-
over, incorporating token-level gradients, allowing the full MEXMA architecture with contrastive
loss, as done in model (2) in|Section 5.1} resulted in competitive performance, already outperform-
ing previous approaches in SentEval and xsim++. This demonstrates the positive impact of direct
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Model #parameters | xsim | | xsim++ | | SentEval ¢ | d-xsim | | d-xsim++ |
DAP 27TM 78.18 2.90 32.82
MEXMA-base | 277M 0.13 13.03 85.30 0.06 11.01
LaBSE 471M 0.92 18.65 85.63 0.26 14.51
MEXMA 559M 0.06 9.60 86.38 0.02 8.26
SONAR 766M 0.09 12.08 85.82 0.04 10.55

Table 7: Model size comparison.

MEXMA-base is based on the XLM-RoBERTa-base, and
MEXMA is based on XLM-RoBERTa-Large. The d-xxx columns are computed on 34 languages

supported by DAP.
Model 81 xsim | | 81 xsim++ | | SentEval 1 90 xsim | | 90 xsim++ | | SentEval 1
SONAR 0.09 12.08 85.82 0.05 11.42 85.82
MEXMA | 0.06 9.60 86.38 0.05 9.06 86.64

Table 8: Training data size comparison. We train MEXMA on either 81 languages, or 90 languages.

See [Appendix C|for the list of covered languages.

token-level gradients and shows that MEXMA can be easily integrated with existing alignment ap-
proaches, such as contrastive learning, to improve their results.

5.3 MODEL AND DATA SIZES

Table 7| shows how our model’s results scale with the model size. We train two models, MEXMA -
base with 277M parameters, based on XLM-RoBERTa-base, and MEXMA with 559M parameters,
based on XLM-RoBERTa-large. We observe that even the smaller model (277M parameters) outper-
forms LaBSE (471M parameters), on both xSIM and xSIM++, and gets a close result in SentEval,
with a 0.3% decrease in performance, with 58.81% of the size. This smaller model also gets sur-
prisingly close to the results of SONAR, which has 766M parameters, i.e. ~2.77 times its size.
These results show that our approach works on smaller and larger models, and it seems to enable
quite powerful small models, due to our stronger training signal. Our larger model, MEXMA, with
~73% the size of SONAR, is able to largely outperform it across all tasks.

To investigate the impact of training data, we conducted experiments using two different language
subsets of the FLORES200. We trained separate MEXMA models on each subset, using the same
hyperparameters as reported in For comparison, we evaluated the publicly available
SONAR model, which was trained on all available 200 languages, on both language subsets. The
results, presented in[Table 8] demonstrate that MEXMA outperforms SONAR on both subsets, high-
lighting the adaptability and robustness of our approach to varying training data.

5.4 MASKING RATIO

NLP models typically use masking percentages around 15%, whereas vision papers have explored
much higher masking ratios, ranging from 40% in BEiT (Bao et al.| 2022) to as high as 90% in MAE
(He et al.l[2022) and V-JEPA (Bardes et al.}|2024), usually aligning augmentations. For text, there is
less redundancy and the representations are more information-dense. In our case, we are aligning the
same sentence in several languages, which can be viewed as augmentations of a pivot sentence, i.e.
the sentence in English. We need to know how much we can mask, to make the unmasking task hard,
but to not deteriorate the performance of our encoder. More information is provided in[Appendix B]
The range 30%-60% seems to be the best operating region. We selected 40% for all experiments
conducted in this paper, since it had the best balance between alignment and classification.

5.5 TOKEN EMBEDDINGS ANALYSIS

Sentence vectors are pooled representations of their tokens. In this section, we investigate the infor-
mation encoded in the tokens from the last layer across different models. Our goal is to determine
whether the tokens primarily convey semantic, lexical, and/or contextual information. Although
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Model % other | % same language | % same sentence | % translation
XLM-RoBERTa | 1.19 63.89 2.65 32.27
LaBSE 0.00 0.13 42.33 57.54
DAP 0.00 0.66 20.11 79.23
No-tok-MEXMA | 0.13 0.40 11.90 87.57
NLLB 0.40 3.17 1.72 94.71
SONAR 0.00 0.13 0.20 99.67
MEXMA 0.26 1.33 0.53 97.88

Table 9: Result of the token matching analysis.

these categories can be intertwined, understanding the dominant characteristics of each model’s
tokens provides valuable insights into their behavior.

To gain insight into the information encoded in individual tokens, we examined their nearest neigh-
bors in the embedding space. We categorized these neighboring tokens into four groups based on
the sentence they belong to. Same language: the matched token is the same token in a different
sentence in the same language, which means that it encodes lexical information. Same sentence: the
token matches another one in the same sentence, meaning the tokens’ representations are heavily in-
fluenced by its context. Translation: the token matches its equivalent in a translation of the original
sentence. It means that the tokens’ representations are aligned across languages. Other: tokens that
do not belong to previous classes.

We conducted these experiments by encoding all tokens from all sentences of the 81 languages (see
for the list) on the FLORES200 test set using each model. We randomly select three
tokens among each of the first 250 English sentences of the dataset as query, and for each query,
we retrieve the five closest tokens among all tokens of all sentences (but itself). We analyze the
properties of the sentence encoders as well as some respective backbones, XLM-RoBERTa (used to
initialize MEXMA) and NLLB-200 encoder (used in SONAR). For the sake of comparison, we also
examine “no-tok-MEXMA”, a variant of MEXMA that does not use token-level gradients during

training. The statistics are shown in [Table 9]

Our analysis reveals distinct characteristics for the considered models and we can cluster them in
three different overall behaviours. XLM-RoBERTa exhibits strong lexical relationships (high same
language percentage) but weaker semantic and contextual relations.

LaBSE, DAP and no-tok-MEXMA show higher semantic capabilities as shown by the larger trans-
lation rate. However, we can also observe a high percentage of matches with adjacent tokens (same
sentence column), indicating that those models encode a very large amount of context in their tokens.

NLLB, SONAR and MEXMA have strong cross-lingual semantic capability as shown by the very
high percentage in the translation column. This is expected as SONAR and NLLB were trained to
perform translation, and MEXMA cross-lingual unmasking. Notice that for SONAR and MEXMA,
this cross-lingual token level alignment is guided by the decoding using the sentence representation
as context (and additionally the direct token-level gradients for MEXMA).

Note also that LaBSE and DAP are the only models trained with a sentence-level contrastive loss,
and even though DAP has an additional loss to enforce the semantic alignment of the tokens, it does
not manage to achieve the same alignment as SONAR and MEXMA.

Notably, comparing the backbones NLLB and XLM-RoBERTa, we can see that the former ex-
hibits more semantical tokens than the latter, as shown by its higher translation rate and lower same
sentence rate, which can be attributed to its translation-based pre-training that enhances semantic
properties and cross-lingual alignment. SONAR, which starts from NLLB, also matches translated
tokens with a high rate, >99%, but does not encode a lot of lexical information (low same language
rate). MEXMA also matches translated tokens very frequently, but additionally displays more lexi-
cality (higher same language rate) and increased semantic robustness (higher other rate). To assess
the latter, we verified MEXMA'’s other matches. The matched tokens belong to sentences in other
languages that are not translations of the original one, with the matched token being the translated
token. We believe that MEXMA produces sentence representations that inherit the above properties,
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Model Xsim | xsim++ | | STS + Classification +
Uni LaBSE 2.02 20.73 63.50 58.03

Uni MEXMA | 0.19 18.21 54.24 56.98

CLS LaBSE 0.92 18.65 64.65 62.77

CLS MEXMA | 0.06 9.60 63.99 65.35

A LaBSE -119.65 | -11.19 +1.78 +7.55

A MEXMA -212.50 | -89.73 +15.24 | +12.81

Table 10: Downstream results for LaBSE and MEXMA, using both a uniform attention distribution
(Uni xxx in the table), and the CLS distribution (CLS xxx in the table). The last two rows provide the
delta between the uniform and CLS distributions, in relative terms. Classification and STS results

are across all datasets mentioned under [Appendix

allowing it to outperform other models on downstream tasks. We provide examples to illustrate the
behavior of the models, also experiments with SimAlign (Jalili Sabet et al.l 2020) , in[Appendix

5.6 SENTENCE VECTOR ANALYSIS

Sentence representations are created by combining token representations in various ways (average
or CLS/attention pooling). The previous section examined properties encoded in tokens, and this
section explores how these representations are combined to form the sentence embedding.

For SONAR, the attention weight distribution is uniform, given that SONAR averages the tokens to
create their sentence representation. MEXMA and LaBSE both use a CLS token to perform pooling
over the tokens in the sentence.

MEXMA’s and LaBSE’s attention distribution are rather different, with LaBSE having a more uni-
form attention distribution across its tokens, and MEXMA having a more skewed representation.
We verity this by computing the average entropy of the attention probabilities in the last layer given
by the CLS token, for both models on the test set of the FLORES200, in the languages supported
by both LaBSE and MEXMA. LaBSE gets an entropy of ~ 3.4, while MEXMA gets an entropy
of ~ 2.5. The entropy values obtained for LaBSE and MEXMA are difficult to interpret in abso-
lute terms, but the relative difference between them is informative. Specifically, LaBSE exhibits a
higher entropy compared to MEXMA, suggesting that it has a more uniform distribution of attention

probabilities. We provide examples of the distributions in

We perform an additional analysis, where we push the uniformity of the sentence representation to
the extreme, by using the average of tokens as our sentence representation. By doing this for both
MEXMA and LaBSE, we aim to understand the importance/impact of the attention distribution for
each model. The results are provided in The deltas are computed in terms of relative
change from the uniform to the CLS representation. We can see that for all tasks, MEXMA has a
larger change in performance compared to LaBSE, showing that indeed since our representations are
more skewed, we suffer more from an increase in uniformity of the distribution. For those tasks, it is
noticeable that MEXMA having a uniform distribution, will lose its ability to focus on the important
tokens, decreasing its results. For LaBSE the decrease is not as accentuated, since it was already not
focusing as much on the important tokens with its more uniform CLS pooling.

6 CONCLUSION

We introduced MEXMA, a novel multilingual alignment technique that leverages both token-level
and sentence-level objectives. We show that integrating token-level objectives into the training of
cross-lingual sentence encoders (CLSE) greatly improves sentence representation quality, outper-
forming current state-of-the-art pre-trained CLSE in bitext mining and other downstream tasks. We
additionally validate these improvements via ablations. Notably, MEXMA also achieves strong to-
ken alignment across languages and effectively encodes meaningful information within each token.
Since the sentence representation is built from these tokens, as we analysed, this leads to better sen-
tence representations. Looking ahead, we plan to explore MEXMA'’s scalability to more languages,
and potentially modalities.
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7 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility of our results we detail the hyperparameters used to train our
network in[Section 3.1Jand[Appendix A] Additionally, we provide the training code as supplementary
material, and will publicly release the code and the model weights after the paper is no longer
anonymous.
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A EXPERIMENTAL SETUP

A.1 ENCODER BACKBONE

The available implementation of XLM-RoBERTa in HuggingFace employs an inefficient attention
mechanism, which we have modified to incorporate the memory-efficient attention from xFormers
(Lefaudeux et al.,2022)). This modification was necessary due to the random batching process used
in our training, which results in a significant amount of padding and increased computational cost.
To address this issue and eliminate padding, we have employed the BlockDiagonalMask EL which
through custom CUDA kernels, avoids computations in padding altogether. With this change we are
able to increase our batch size in each GPU by a factor of ~ 8.

A.2 UNMASKING HEAD

For the unmasking head, we use 6 transformer layers, also leveraging the memory-efficient attention.

A.3 COMPUTE AND TRAINING LENGTH

Our models were trained on a single node of 8 A100 GPUs. Each GPU had a batch size of 150,
totalling 1,200 batch size across all GPUs. We accumulated two gradients, making our effective
batch size 2,400. We trained our models for 300k steps.

A.4 LOSSES

Our models were trained witha = 1, 5 = % and v = %

A.5 TRAINING PARAMETERS

We utilize the AdamW optimizer for our training process. The learning rate is linearly increased
from le-5 for the 300k steps. To optimize memory usage, we employ mixed precision training,
where the model is stored in float32, while most computations are performed in float16. The max-
imum sequence length for our input data is set to 200 tokens. Finally, we apply a masking ratio of
40% to the input data.

2https ://facebookresearch.github.io/xformers/components/ops.html#
xformers.ops.fmha.attn_bias.BlockDiagonalMask
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B ABLATIONS

B.1 MODEL COMPONENTS

component Xsim | xsim++ | | SentEval ¢
Non-symmetrical (1) 0.09 14.75 84.68
+ Symmetrical architecture (2) 0.09 000 | 14.39 84.83
+ Alignment loss (clean to dirty alignment) (3) | 0.21 +0.12 | 12.09 85.61
+ Clean to clean alignment (4) 0.15 11.37 85.06 1055
+ Token-level grads (5) 0.10 9.67 85.98
+ KoLeo loss (6) - MEXMA 0.06 9.60 86.38

Table 11: Ablation study of the different components of the model. All experiments are conducted

with the final parameters of the model, as reported in[Section 3.1}

In[Table T1] we ablate the different components of our architecture described in[Section 3] We briefly
explain each entry in the table. Model (1) has only two encoder instances, one for each language,
where one of the inputs is masked, and the other is left clean. The token unmasking is performed
with the clean sentence representation as context. The languages are randomly swapped at every new
sample, to eliminate potential biases. The gradients from the unmasking task are only propagated
back to the encoder via the sentence representation, and there is no gradient propagation from the
individual tokens back to the encoder. There is also neither alignment nor koleo losses. Model (2)
adds two additional encoder instances, totalling four instances, two for each language, where now
each language has its clean and masked input. This allows to unmask language .4 with language B,
and vice-versa, and will also allow (once added) to align two clean sentence representations. Model
(3) adds the alignment loss, but it is performed between the masked sentence representation of lan-
guage A and the clean sentence representation of language B, to better emphasize the advantages of
having a symmetrical architecture with an alignment loss between two clean representations. Model
(4) then changes the alignment loss to be performed between the two clean sentence representations
of each language. In model (5) we allow the gradients from the unmasking to be propagated to the
encoder via each individual token, as well as its sentence representation. Finally, model (6) adds the
KoLeo loss.

The results indicate that each component always enhances performance on at least two out of the
three tasks. Notably, the alignment loss, (3)-(4), and token-level gradients, (5), emerge as the most
critical components. More precisely, the alignment loss yields substantial improvements on two
tasks while also resulting in a notable decline in performance on another task. In contrast, the
token-level gradients consistently provide significant performance gains across all three tasks.

B.2 CROSS-LINGUALITY

component Xsim | xsim++ | | SentEval ¢
Same language unmasking | 21.83 73.78 80.34
Cross lingual unmasking 0.06 9.60 86.38

Table 12: Ablation study of the importance of cross-lingual unmasking. All experiments are con-
ducted with the final parameters of the model, as reported in

In we ablate the importance of cross-linguality in the unmasking. To conduct this ex-
periment, we performed the unmasking using as context the sentence representation in the same
language of the tokens being unmasked, instead of the representation in the opposite language. The
large gap in the results shows the importance of doing the unmasking cross-lingually, as motivated
in The experiments were conducted using the same hyperparameters.
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Masking % | xsim | | xsim++ | | SentEval ¢
20% 0.06 10.50 85.87
30% 0.06 9.82 86.00
40% 0.06 9.60 86.38
50% 0.07 9.56 86.37
60% 0.08 9.79 86.13
70% 0.09 10.65 86.41
80% 0.10 12.81 85.85
90% 0.11 14.62 84.99

Table 13: The model performance across different masking ratios.

B.3 MASKING RATIO

Classical NLP masked encoders like BERT use a small masking percentage, usually ~ 15%, without
aligning any augmentations. Recent vision approaches use much higher masking percentages. BEiT
(Bao et al.,[2022) was one of the first masked image modelling (MIM) approaches, in a BERT-style
training, and masked 40%. MAE (He et al.,[2022)) is another BERT-like model for images, and masks
75%, but shows that even masking 80% or 90% still achieves good results. DINO v2 (Oquab et al.,
2024) and I-BOT (Zhou et al., [2022) mask between 10%-50% in a block-wise masking scenario,
aligning augmentations. I-BOT can use 65%-75% masking ratio, if randomly masking (instead of
block-wise masking). For videos, V-JEPA (Bardes et al.l|2024) masks with a very high percentage
of 90%. Recent textual approaches, namely RetroMAE experiment with masking percentages of up
to 50~70%, but this task will not update the actual encoder.

For MEXMA, since these masking gradients are updating our encoder, we need to strive for a bal-
ance where unmasking is hard, and cannot be done by the encoder and head, but also not too much
that will deteriorate the representations of the encoder. shows the results we obtained for
the different masking ratios.

B.4 FAIRER COMPARISONS

Model xsim | | xsim++ | | SentEval ¢

XLM-R LaBSE | 0.10 33.82 86.08

NLLB-MEXMA | 0.11 23.36 85.20
Baselines

MEXMA 0.06 9.60 86.36

SONAR 0.09 12.08 85.82

LaBSE 0.92 18.65 85.63

Table 14: Fairer comparisons with same backbone to compare different strategies, all trained on the
same data.

In this section, we conduct additional experiments to enhance the fairness of our method compar-
isons, ensuring that all models are trained on the same data as MEXMA. Results are reported in
To facilitate a more equitable comparison with LaBSE, we re-implemented LaBSE using
the same backbone as MEXMA, i.e. XLM-RoBERTa (XLM-R). The model was trained with the
same hyperparameters reported in the original paper, specifically a 4k batch size (compared to the
1k batch size used in MEXMA). This different backbone and data led to improved performance over
LaBSE on the xsim and SentEval benchmarks, although it resulted in a significant decrease in perfor-
mance on the xsim++ benchmark. For a more accurate comparison with SONAR, we replaced the
XLM-R backbone in MEXMA with the NLLB encoder. This approach is more straightforward than
training SONAR with XLM-R, as SONAR requires a pre-trained translation decoder. The results,
however, were inferior to those of MEXMA across all tasks, with larger gaps than SONAR. This
outcome is expected, given that the NLLB model was not originally trained for masked language
modeling.
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C LANGUAGE INFORMATION APPENDIX

In this section, we cover the languages used by our model. The list of languages used to train
our model is reported in The list used to conduct the experiments with 90 languages is

available in
FLORES200 code | Language FLORES200 code | Language
acm_Arab Mesopotamian Arabic || kan_Knda Kannada
aeb_Arab Tunisian Arabic kat_Geor Georgian
afr_Latn Afrikaans kaz_Cyrl Kazakh
amh_Ethi Ambharic khm_Khmr Khmer
ary_Arab Moroccan Arabic kir_Cyrl Kyrgyz
arz_Arab Egyptian Arabic kor_Hang Korean
asm_Beng Assamese lao_Laoo Lao
azb_Arab South Azerbaijani mal_Mlym Malayalam
azj_Latn Azerbaijani mar_Deva Marathi
bel_Cyrl Belarusian mkd_Cyrl Macedonian
ben_Beng Bengali mya_Mymr Burmese
bos_Latn Bosnian nld_Latn Dutch
bul_Cyrl Bulgarian nno_Latn Norwegian
cat_Latn Catalan nob_Latn Norwegian Bokmal
ces_Latn Czech npi_Deva Nepali
ckb_Arab Central Kurdish pol_Latn Polish
cym_Latn Welsh por_Latn Portuguese
dan_Latn Danish ron_Latn Romanian
deu_Latn German rus_Cyrl Russian
ell_Grek Greek san_Deva Sanskrit
eng_Latn English sin_Sinh Sinhala
epo_Latn Esperanto slk_Latn Slovak
est_Latn Estonian slv_Latn Slovenian
eus_Latn Basque snd_Arab Sindhi
fin_Latn Finnish som_Latn Somali
fra_Latn French spa_Latn Spanish
gla_Latn Scottish Gaelic srp_Cyrl Serbian
gle_Latn Irish sun_Latn Sundanese
glg_Latn Galician swe_Latn Swedish
guj_Gujr Gujarati swh_Latn Swabhili
hau_Latn Hausa tam_Taml Tamil
heb_Hebr Hebrew tel_Telu Telugu
hin_Deva Hindi tha_Thai Thai
hrv_Latn Croatian tur_Latn Turkish
hun_Latn Hungarian uig_Arab Uyghur
hye_Armn Armenian ukr_Cyrl Ukrainian
ind_Latn Indonesian urd_Arab Urdu
isl_Latn Icelandic vie_Latn Vietnamese
ita_Latn Italian xho_Latn Xhosa
jav_Latn Javanese zho_Hant Chinese (Traditional)
jpn_Jpan Japanese

Table 15: 81 languages set.
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FLORES200 code | Language FLORES200 code | Language
afr_Latn Afrikaans kmr_Latn Kurdish (Kurmanji)
als_Latn Albanian kor_Hang Korean
amh_Ethi Ambharic lao_Laoo Lao
arb_Arab Arabic lit_Latn Lithuanian
asm_Beng Assamese Ivs_Latn Latvian
azj_Latn Azerbaijani || mal Mlym Malayalam
bel _Cyrl Belarusian mar_Deva Marathi
ben_Beng Bengali mkd_Cyrl Macedonian
bos_Latn Bosnian mya_Mymr Burmese
bul_Cyrl Bulgarian nld_Latn Dutch
cat_Latn Catalan nno_Latn Norwegian
ces_Latn Czech npi_Deva Nepali
cym_Latn Welsh ory_Orya Oriya
dan_Latn Danish pan_Guru Punjabi
deu_Latn German pbt_Arab Pashto
ell_Grek Greek plt_Latn Malagasy
eng_Latn English pol_Latn Polish
epo_Latn Esperanto por_Latn Portuguese
est_Latn Estonian prs_Arab Persian
eus_Latn Basque ron_Latn Romanian
fin_Latn Finnish rus_Cyrl Russian
fra_Latn French san_Deva Sanskrit
gaz_Latn Oromo sin_Sinh Sinhala
gla_Latn Gaelic slk_Latn Slovak
gle_Latn Irish slv_Latn Slovenian
glg Latn Galician snd_Arab Sindhi
guj_Gujr Gujarati som_Latn Somali
hau_Latn Hausa spa_Latn Spanish
heb_Hebr Hebrew srp_Cyrl Serbian
hin_Deva Hindi sun_Latn Sundanese
hrv_Latn Croatian swe_Latn Swedish
hun_Latn Hungarian swh_Latn Swahili
hye_Armn Armenian tam_Taml Tamil
ind_Latn Indonesian || tel_Telu Telugu
isl_Latn Icelandic tha_Thai Thai
ita_Latn Italian tur_Latn Turkish
jav_Latn Javanese uig_Arab Uyghur
jpn_Jpan Japanese ukr_Cyrl Ukrainian
kan_Knda Kannada urd_Arab Urdu
kat_Geor Georgian uzn_Latn Uzbek
kaz_Cyrl Kazakh vie_Latn Vietnamese
khk_Cyrl Mongolian xho_Latn Xhosa
khm_Khmr Khmer ydd_Hebr Yiddish
kir_Cyrl Kyrgyz zho_Hans Chinese (Simplified)
zsm_Latn Malay zho_Hant Chinese (Traditional)

Table 16: 90 languages set
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D DATASETS

In this section we report the data used to train our models. reports all the datasets used to
train the models.

Dataset Source | Origin

bible-uedin Opus | (Christodouloupoulos & Steedman| (2015); Tiedemann (2012)
DGT Opus Steinberger et al.|(2012); Tiedemann| (2012)

ECB Opus 1edemann| (2012

EMEA Opus 1edemann| (2012

EUbookshop | Opus 1edemann| (2012
infopankki Opus 1edemann| (2012

memat Opus 1iedemann| (2012

OpenSubtitles | Opus 1son & Tiedemann|(2016); |Tiedemann| (2012)), Link: opensubtitles.org
QED Opus Abdelali et al.|(2014)); Tiedemann

Tanzil Opus 1edemann| (2012), Link: tanzil.net/trans

Tatoeba Opus 1edemann| (2012

Ted20 Opus eimers & Gurevych|(2020); Tiedemann| (2012

Ticol9 Opus Anastasopoulos et al.|(2020); Tiedemann| (2012

UNPC Opus Ziemski et al.[(2016); Tiedemann (2012)

Wikimedia Opus 1edemann| (2012
NLLB mined | Opus | Schwenk et al.(2020); Fan et al.|(2020); Tiedemann| (2012)

Table 17: Datasets used to train our models.
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E MTEB DATASETS

In this section, we report the scores for each task of the MTEB benchmark reported in
We report the scores per task, with every dataset used per task, and per language. MEXMA is able
to outperform the previous SOTA results on mining, while also improving the downstream results
on classification and pair classification. LaBSE outperforms all other models on STS.

E.1 BITEXT MINING

Results for mining are in[Table T8] for the BUCC dataset. We report the scores on the four available
languages: German, French, Russian and Chinese. Results on all languages covered by MEXMA
for xsim and xsim++ on FLORES200 are provided in Tables[T9]and 20} respectively.

LP DAP | SONAR | LaBSE | MEXMA
de-en | 99.45 | 98.82 99.35 99.52
fr-en | 98.58 | 98.09 98.72 98.98
ru-en | 97.74 | 97.37 97.78 98.06
zh-en | 98.96 | 98.72 99.16 99.18

Table 18: BUCC results for each language pair (LP).

E.2 CLASSIFICATION

Classification results for English are available in for SentEval, and in for the

English MTEB classification datasets. Classification results for Chinese, French, Danish, Norwegian

and Polish are reported in[Table 23] [Table 24] [Table 23] [Table 26} [Table 27 respectively. MEXMA

outperforms all other models on average.

E.3 PAIR CLASSIFICATION

Pair classification results for English, French and Chinese are reported in [Table 28| [Table 29| and
respectively. MEXMA outperforms all other models on average.

E.4 SEMANTIC TEXTUAL SIMILARITY (STS)

Semantic Textual Similarity (STS) results are reported in [Table 31} [Table 33| [Table 34] and [Table 32
for English, French, Polish and Chinese, respectively. LaBSE outperforms MEXMA and the re-

maining models on STS. MEXMA and LaBSE outperform SONAR by large margins.
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Language | SONAR | LaBSE | MEXMA | DAP || Language SONAR | LaBSE | MEXMA | DAP
acm_Arab | 0 0 0 - kan_Knda 0 0 0 -
aeb_Arab | 0.10 0.10 0.10 - kat_Geor 0.40 0 0 7.41
afr_Latn 0 0 0 0.10 kaz_Cyrl 0.20 0.20 0.20 44.96
amh_Ethi | 0 0 0 khm_Khmr | 0 2.08 0 -
ary_Arab | 0.79 1.09 0.89 - kir_Cyrl 0.10 0 0 -
arz_Arab 0 0 0 - kor_Hang 0 0 0 0
asm_Beng | 0 0 0 lao_Laoo 0 2.77 0 0.20
azb_Arab | 1.68 9.58 0.99 mal Mlym | 0.10 0.10 0.10 1.48
azj_Latn 0.20 0.10 0.10 - mar_Deva 0 0 0 1.38
bel_Cyrl 0.30 0 0 - mkd_Cyrl 0 0 0 -
ben_Beng | 0 0 0 0 mya_Mymr | 0.20 0.30 0.20 -
bos_Latn 0 0 0 - nld_Latn 0.10 0 0 0
bul_Cyrl 0.10 0 0 0 nno_Latn 0.10 0 0.10 -
cat_Latn 0 0 0 - nob_Latn 0.10 0.10 0.10

ces_Latn 0 0 0 - npi_Deva 0.40 0.30 0.30 -
ckb_Arab | 0.10 49.11 0 pol_Latn 0 0 0 -
cym_Latn | O 0 0 - por_Latn 0 0 0 0
dan_Latn | O 0 0 - ron_Latn 0 0 0 -
deu_Latn | O 0 0 0 rus_Cyrl 0.10 0 0 0
ell_Grek 0 0 0 0.10 san_Deva 0.50 0.79 0.40 -
epo_Latn | O 0 0 - sin_Sinh 0 0 0 -
est_Latn 0 0 0 0 slk_Latn 0 0 0

eus_Latn 0 0 0 0 slv_Latn 0.10 0 0 -
fin_Latn 0.10 0.10 0.10 0.10 snd_Arab 0 0 0 -
fra_Latn 0 0 0 0 som_Latn 0.10 0.20 0.10 -
gla_Latn 0.10 0.10 0.10 - spa_Latn 0.10 0.10 0.10 0.10
gle_Latn 0 0 0 - srp_Cyrl 0 0 0 -
glg_Latn 0 0 0 sun_Latn 0.10 0.10 0.10 -
guj_Gujr 0 0 0 - swe_Latn 0 0 0 -
hau_Latn | 0.30 0.30 0.30 - swh_Latn 0 0 0 0
heb_Hebr | 0 0 0 0 tam_Taml 0 0 0 28.26
hin Deva | 0.10 0 0 0.10 tel_Telu 0 0 0 2.77
hrv_Latn 0 0 0 - tha_Thai 0 5.53 0.10 0.10
hun_Latn | O 0 0 0 tur_Latn 0 0 0 0
hye_Armn | 0 0 0 - uig_Arab 0.10 0.10 0.10 -
ind_Latn 0 0 0 0 ukr_Cyrl 0 0 0 -
isl_Latn 0.20 0.10 0.10 - urd_Arab 0.10 0.10 0.10 0.30
ita_Latn 0 0 0 0 vie_Latn 0 0 0 0
jav_Latn 0 0 0 11.17 || xho_Latn 0.10 0.10 0.10 -
jpn_Jpan 0 0 0 0 zho_Hant 0.10 0 0 0

Table 19: xsim results for each language in FLORES200 covered by MEXMA.
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Language | SONAR | LaBSE | MEXMA | DAP Language SONAR | LaBSE | MEXMA | DAP
acm_Arab | 13.54 28.56 12.35 - kan_Knda 16.21 18.38 10.77 -
aeb_Arab | 14.23 35.38 14.82 - kat_Geor 16.01 18.48 11.66 69.66
afr_Latn 6.62 9.39 5.63 20.75 || kaz_Cyrl 12.55 15.32 8.89 89.72
amh_Ethi | 11.56 19.07 7.51 - khm_Khmr | 14.72 20.55 9.39 -
ary_Arab 15.91 44 .47 25.59 - kir_Cyrl 15.12 20.55 13.04 -
arz_Arab 13.93 31.03 13.24 - kor_Hang 14.82 18.58 9.19 -
asm_Beng | 17.98 41.11 13.44 - lao_Laoo 10.18 18.77 7.41 42.19
azb_Arab | 45.26 69.17 33.00 - mal Mlym | 13.14 19.96 11.17 54.35
azj_Latn 17.69 17.69 12.35 - mar_Deva 10.97 15.42 8.00 54.45
bel_Cyrl 20.26 21.94 13.44 - mkd_Cyrl 7.51 11.86 6.42 -
ben Beng | 13.83 17.79 8.70 33.60 || mya_Mymr | 19.66 28.06 1591 -
bos Latn | 7.61 8.10 5.24 - nld_Latn 13.34 13.34 10.08 20.45
bul_Cyrl 9.19 9.19 5.53 17.89 || nno_Latn 16.80 13.24 8.30 -
cat_Latn 6.03 8.79 5.04 - nob_Latn 15.51 11.56 7.41 -
ces_Latn 8.20 11.76 6.72 - npi_Deva 14.53 13.74 7.61 -
ckb_Arab | 13.64 93.97 14.03 - pol_Latn 11.17 12.65 8.70 -
cym_Latn | 7.61 14.03 543 - por_Latn 5.93 9.09 6.32 14.53
dan_Latn 6.03 8.10 4.84 - ron_Latn 8.10 8.40 5.73 -
deu_Latn | 6.13 7.61 6.13 15.22 || rus_Cyrl 791 9.98 6.23 19.17
ell_Grek 10.57 16.40 8.99 26.58 || san_Deva 24.41 51.09 22.33 -
epo_Latn | 6.13 9.49 5.63 - sin_Sinh 12.15 16.01 791 -
est_Latn 8.10 11.46 5.93 18.87 || slk_Latn 8.99 10.77 7.51 -
eus_Latn 10.87 15.32 8.30 25.20 || slv_Latn 9.58 11.56 6.62 -
fin_Latn 8.99 13.44 8.50 20.55 || snd_Arab 13.64 28.85 9.68 -
fra_Latn 5.93 7.61 5.34 17.59 || som_Latn 15.81 30.93 14.92 -
gla_Latn 17.19 23.62 12.25 - spa_Latn 9.49 11.07 7.71 20.55
gle Latn 10.57 15.81 9.68 - srp_Cyrl 6.92 9.98 5.34 -
glg_Latn 7.51 8.40 5.63 - sun_Latn 15.02 16.50 10.38 -
guj_Gujr 11.56 15.12 8.30 - swe_Latn 8.00 8.99 6.03 -
hau_Latn 16.40 25.99 13.44 - swh_Latn 7.11 15.71 8.89 29.05
heb_Hebr | 6.92 15.02 7.51 26.28 || tam_Taml 15.61 18.48 11.26 81.32
hin_Deva | 9.58 10.97 6.92 29.74 || tel_Telu 13.83 15.12 10.87 57.02
hrv_Latn 8.20 9.09 6.52 - tha_Thai 10.57 28.16 8.20 30.83
hun_Latn | 9.09 13.74 7.91 17.79 || tur_Latn 8.60 10.87 7.51 18.38
hye_Armn | 7.51 12.94 9.09 - uig_Arab 16.70 23.12 13.74 -
ind_Latn 6.23 9.09 5.73 14.92 || ukr_Cyrl 10.08 12.25 7.61 -
isl Latn 10.38 14.43 8.50 - urd_Arab 12.25 16.70 10.08 47.13
ita_Latn 9.98 9.49 6.23 16.11 || vie_Latn 7.41 12.15 7.61 18.58
jav_Latn 13.74 17.09 9.88 63.04 || xho_Latn 11.96 31.42 15.61 -
jpn_Jpan 15.22 17.79 10.08 27.17 || zho_Hant 17.89 24.60 12.55 28.56

Table 20: xsim++ results for each language in FLORES200 covered by MEXMA.

Task DAP | SONAR | LaBSE | MEXMA
Average | 78.18 | 85.82 85.63 86.38
MR 74.33 | 81.23 78.89 80.14
SST2 81.88 | 86.49 83.64 86.16
TREC 75.00 | 95.00 92.80 94.80
CR 78.70 | 85.67 86.44 84.43
SUBJ 91.83 | 93.70 93.14 94.27
MPQA | 78.86 | 89.38 89.66 89.41
MRPC | 66.67 | 69.28 74.84 75.42

Table 21: SentEval results.
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Dataset DAP | SONAR | LaBSE | MEXMA
Average 66.35 | 65.63 66.75 68.20
AmazonCounterfactualClassification | 77.16 | 81.49 75.93 78.06
AmazonPolarityClassification 65.73 | 62.73 68.95 64.96
AmazonReviewsClassification 34.03 | 31.55 35.80 32.77
Banking77Classification 71.83 | 73.50 69.85 75.14
ImdbClassification 62.06 | 55.75 62.04 62.08
MTOPDomainClassification 85.54 | 89.92 86.06 89.85
MTOPIntentClassification 64.17 | 70.85 63.03 75.18
MasakhaNEWSClassification 7795 | 5542 77.77 72.28
MassivelntentClassification 63.48 | 64.37 61.46 66.64
MassiveScenarioClassification 68.75 | 69.05 66.41 70.38
ToxicConversationsClassification 59.14 | 67.28 66.90 62.85

Table 22: MTEB English classification results.

Dataset DAP | SONAR | LaBSE | MEXMA
Average 67.46 | 63.13 68.69 66.25
AmazonReviewsClassification (zh) 34.35 | 31.91 32.98 33.40

MassivelntentClassification (zh-CN) 71.99 | 62.08 63.86 74.41
MassiveScenarioClassification (zh-CN) | 65.45 | 68.88 70.85 65.28

JDReview 71.54 | 69.59 79.13 70.73
MultilingualSentiment 62.03 | 57.69 65.52 60.34
OnlineShopping 85.03 | 75.64 85.62 80.09
Waimai 81.82 | 76.12 82.85 79.52

Table 23: MTEB Chinese classification results.

Dataset DAP | SONAR | LaBSE | MEXMA
Average 63.76 | 61.88 62.05 66.07
AmazonReviewsClassification | 35.60 | 34.91 38.52 35.62
MTOPDomainClassification 84.43 | 86.19 84.14 86.70
MTOPIntentClassification 65.78 | 66.75 62.01 74.12
MassivelntentClassification 64.51 | 58.55 60.47 65.59
MassiveScenarioClassification | 68.50 | 63.02 65.1 68.31

Table 24: MTEB French classification results.

Dataset DAP | SONAR | LaBSE | MEXMA
Average 52.27 | 54.01 49.53 55.38
DanishPolitical CommentsClassification | 36.44 | 37.59 38.69 38.75
LccSentimentClassification 58.27 | 54.27 50.07 52.40
MassivelntentClassification (da) 58.74 | 62.03 58.25 65.75
MassiveScenarioClassification (da) 66.15 | 67.76 65.24 69.26
NordicLangClassification 41.73 | 48.40 35.38 50.74

Table 25: MTEB Danish classification results.

Dataset DAP | SONAR | LaBSE | MEXMA
Average 51.58 | 55.59 50.76 58.08
MassivelntentClassification 55.85 | 59.90 5791 64.48
MassiveScenarioClassification | 62.67 | 65.81 64.29 68.22
NoRecClassification 46.06 | 48.25 45.44 48.88
NordicLangClassification 41.73 | 48.40 35.38 50.74

Table 26: MTEB Norwegian classification results.
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Dataset DAP | SONAR | LaBSE | MEXMA
Average 53.03 | 55.09 56.00 57.09
AllegroReviews 31.58 | 29.62 34.89 31.09
MassivelntentClassification (pl) 58.53 | 65.86 59.71 66.85
MassiveScenarioClassification (pl) | 63.05 | 69.99 64.58 70.20
PAC 67.97 | 73.87 68.11 73.31
PolEmo2.0-IN 61.75 | 52.80 64.00 59.10
PolEmo2.0-OUT 35.32 | 38.40 44.72 42.00
Table 27: MTEB Polish classification results.
Dataset DAP | SONAR | LaBSE | MEXMA
Average 63.87 | 70.73 69.75 74.39
PawsX 55.30 | 75.05 54.07 73.18
SprintDuplicateQuestions | 72.47 | 77.08 89.26 86.89
XNLI 63.83 | 60.06 65.92 63.10
Table 28: MTEB English pair classification results.
Dataset DAP SONAR | LaBSE | MEXMA
Average 73.03 | 71.57 73.70 78.13
PawsX (fr) 55.57 | 71.36 54.63 71.07
Opusparcus (fr) | 100.00 | 100.00 100.00 | 100.00
XNLI 63.52 | 61.34 66.48 63.32
Table 29: MTEB French pair classification results.
Dataset DAP | SONAR | LaBSE | MEXMA
Average 61.12 | 60.80 61.95 62.12
PawsX(zh) | 56.20 | 65.35 54.26 63.68
Cmnli 69.29 | 61.86 72.67 67.45
Ocnli 57.86 | 55.18 58.91 55.23
Table 30: MTEB Chinese pair classification results.
Dataset DAP | SONAR | LaBSE | MEXMA
Average 67.45 | 67.24 70.93 70.62
BIOSSES 70.51 | 79.11 78.70 75.97
SICK-R 69.18 | 62.94 69.99 66.00
STS12 64.69 | 65.46 65.08 67.32
STS13 63.50 | 62.79 67.98 67.05
STS14 61.49 | 57.54 64.03 62.73
STS15 75.38 | 74.25 76.59 75.72
STS16 68.00 | 75.73 72.98 76.93
STS17 (en-en) 77.03 | 79.94 79.45 80.97
STS22 (en) 53.38 | 47.12 60.97 57.11
STSBenchmark 69.39 | 67.39 72.25 73.53
STSBenchmarkMultilingualSTS (en) | 69.39 | 67.39 72.25 73.53

Table 31: MTEB English STS results.
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Dataset DAP | SONAR | LaBSE | MEXMA
Average 4531 | 42.15 47.50 51.56
ATEC 28.01 | 26.18 26.61 29.68
BQ 40.01 | 37.66 42.60 44.37
LCQMC 5497 | 50.11 52.19 61.34
PAWSX 12.99 | 32.75 10.23 27.77
STS22(zh) 52.05 | 52.82 63.02 63.49
STSB 63.67 | 50.18 68.38 65.75
STSBenchmarkMultilingualSTS (zh) | 65.46 | 45.33 69.50 68.55
Table 32: MTEB Chinese STS results.
Dataset DAP | SONAR | LaBSE | MEXMA
Average 67.74 | 65.60 74.33 70.10
SICKFr 66.84 | 66.1 69.94 65.94
STS22 (fr) 64.44 | 61.72 77.95 72.19
STSBenchmarkMultilingualSTS (fr) | 71.92 | 68.99 75.1 72.17
Table 33: MTEB French STS results.
Dataset DAP | SONAR | LaBSE | MEXMA
Average 57.06 | 57.17 65.82 63.67
CDSC-R 74.12 | 85.77 85.53 85.95
SICK-R-PL 60.63 | 62.98 65.90 64.31
STS22 (pl) 28.16 | 25.31 39.28 32.51
STSBenchmarkMultilingualSTS (pl) | 65.31 | 54.62 72.58 71.93

Table 34: MTEB Polish STS results.
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F TOKEN LEVEL ANALYSIS

In this section, we illustrate the behaviour of each model by visualizing the closest tokens in the
space. We observe that MEXMA matches tokens in translations but also different contexts when
tokens are used with the same meaning. This is further broken down in Table[9] which distinguishes
between two types of matches MEXMA does: (1) “same language” matches, where the model
identifies the same token used in a different context (monolingual), and (2) ”other” matches, where it
recognizes translated tokens in a sentence in another language that is not a translation (multilingual).
We observe that SONAR primarily matches tokens across translations, but does not tend to match the
same token when it appears in different sentences within the same language. Examples of MEXMA
and SONAR comparisons of matching the same token in other sentences is in [Figure 5] and both
models matching translations in In both figures, we show the three closest tokens to the
selected token, denoted as query on the green box, with the blue text. The closest tokens are in
the purple boxes with the pink text. Additionally, we show examples of how LaBSE and MEXMA
without direct token-level gradients (no-tok MEXMA), match adjacent tokens in the same sentence
regularly. These are shown for LaBSE in and for no-tok MEXMA in Lastly, we
show how XLM-RoBERTa mostly matches the same tokens in other sentences in the same language,
presented in For these last three models, we show the top-2 closest tokens, with the same
color scheme as mentioned above. Each image has two examples for the given model.

The governor's office said nineteen of the

M y ) He built a WiFi door bell, he said.
injured were police officers.

Token: teen Token:

He built 2 WiFi door bell, he said. W

( He built a WiFi door bell, he said. W

The governor's office said nineteen of the
injured were police officers.

AN J/ J

The governor's office said nineteen of the
injured were police officers.

Figure 2: Example of LaBSE’s token matching. The token in blue is the query token, the tokens in
pink are the closest tokens to the query token in the space.

. Scientists say this animal's plumage ... "The researchers suggested ... this is the
with a pale ... underside. tail ... chick's down."
Token: mage Token:

. Scientists say this animal's plumage ... "The researchers suggested ... this is the
pale ... underside. tail ... chick's down."

. Scientists say this animal's plumage "The researchers suggested ... this
... pale ... underside. is the tail ... chick's down."

Figure 3: Example of MEXMA no token-level grad’s token matching. The token in blue is the query
token, the tokens in pink are the closest tokens to the query token in the space.

This theory says that most dark matter around a
galaxy is located around a galaxy in a kind of halo,
and is made of lots of small particles.

"We now have 4-month-old mice that are non-
diabetic that used to be diabetic," he added.

Token: diabet Token: parti
Some venues offer alcoholic beverages on the . -
Examples include control, planning and ...
house. ...
You can also have alloys that include small A curry is a dish based on herbs and spices,
amounts of non-metallic elements like carbon. together with either meat or vegetables.

Figure 4: Example of XLM-RoBERTa token matching. The token in blue is the query token, the
tokens in pink are the closest tokens to the query token in the space.
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He built a WiFi door bell, he said.

Token:

)

WiFi ile calisan bir kapi
zili yaptigini soyledi.

@0ECGaN0 63©) WiFi
@WIA 6)6NI@3
96MEIH6 10@M) @oNIM
alO600).

Previously, Ring's CEO,
Jamie Siminoff, remarked
the company started when
his doorbell wasn't audible

from his shop in his garage.

)

©$& WiFi 86 S
80T, O TI)C.

-

Dheweke mbangun bel
lawang WiFi, jarene.

-~

SN T (1 5 a0 em2-
PR (O (57 (OfF FRARAN

-

The researchers suggested that, even though this is the tail of
a young dinosaur, the sample shows adult plumage and not a
chick's down.

Token:

The feathers' structure
suggests that they were not
used in flight but rather for

temperature regulation or
display. The researchers

suggested that, even though
this is the tail of
a young dinosaur, the sample
shows adult plumage
and not a chick's down.

)

Cercetdtorii au sugerat ca,
desi aceasta este coada
unui dinozaur tanar,
esantionul aratd un penaj
adult si nu puful unui pui.

-
N

Os pesquisadores
sugeriram que, apesar do
rabo ser de um
dinossauro jovem, a amostra
revela uma plumagem
adulta, ndo uma penugem.

Els investigadors
suggereixen que, tot i que
es tracta de la cua d'un
dinosaure jove, la mostra
revela un plomatge adult,
i no pas plomissol.

)

Gwwgnuninnutpp
Gupwnnnd U, np sUwjwd
uw tnhuwuwnn nhunquiyph
wng £, Udniap gnuyg £ tnwihu
Utdwhwuwyh thGwnnip W ng
dwgh:

-
)

ARE S 3. Z OEAHE LIRS
DRETHZICHL DD LT, O
BROPETIEHR L KADPENE
ATWBZEHREBLTWS,

-

The find also grants insight into the evolution of feathers
in birds.

Token:

~

But there are a lot of
things about birds that
still look like a dinosaur.

0D &eN3)allSIOmo
ol 8101 ORQILNHSIOS
9RO CRIHH HNIET2jo
Q).

p

The area is also home to
an extremely wide variety
of animal and bird species.

. )

Seoor(H\LILg LILITeoTa)
Lmeneuserley @\m@ e erleor
urflesormio
aueTFEFRenw Ll Lmilw
iﬂafmmmlsmsu sul;prr'u@@mg./

Oppdagelsen gir i tillegg
innsikt i utviklingen for
fjeer hos fugler.

. )

The number of people present was so large that it was not
possible for everybody to gain access to the funeral in St.
Peter's Square.

Token:

O numero de pessoas
presentes era tdo grande
que ndo foi possivel que
todos tivessem acesso
ao funeral na Praga de
Sé&o Pedro.

a0

Over four million people
went to Rome to attend
the funeral.

-
)

Hi havia tanta gent present

que no tots van aconseguir

accedir al funeral a la Plaga
de Sant Pere.

-

Fue tanta la cantidad de
gente que se concentr6, que

no todos pudieron acceder
al funeral en la Plaza de San
Pedro.

R

O nGimero de pessoas
presentes era tdo grande
que ndo foi possivel que
todos tivessem acesso
ao funeral na Praga de
S&o Pedro.

-
)

Foi tal o nimero de persoas
que acudiu que non todo o
mundo puido acceder
ao funeral na praza de
San Pedro.

-

Figure 5: Comparison of SONAR and MEXMA token matching. MEXMA displays the ability to
match a token in another sentence in the same language. SONAR matches a translated token. The
token in blue is the query token, the tokens in pink are the closest tokens to the query token in the
space. MEXMA is on the left, SONAR on the right.
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"We now have 4-month-old mice that are non-diabetic that
used to be diabetic," he added.

Token: diabet

"Agora temos ratos de 4

meses de idade que ndo sdo
diabéticos e que antes eram
diabéticos,"complementou.

"Ni havas nun 4-monatagajn

musojn, kiuj ne estas
diabetaj, sed estis diabetaj",
li aldonis.

ol e b A aS LS v S o)

S e S e 4 s ol e
LS US Uas K52 s Gn "

-

Siminoff said sales boosted after his 2013 appearance in a
Shark Tank episode where the show panel declined funding the
startup.

"Mae gennym ni nawr lygod
pedwar mis oed sydd ddim yn
ddiabetig oedd yn arfer bod
yn ddiabetig",

ychwanegodd e.

"Agora temos ratos de 4
meses de idade que ndo sdo
diabéticos e que antes eram
diabéticos,"complementou.

“Ons het nou 4-maand oue

muise wat nie diabeties is,
wat eenmaal diabeties was,”
het hy bygevoeg.

vendas aumentaram apos
sua aparigdo de 2013 em

Token: boost:
Siminoff afirmou que as Siminoff afirmou que as

vendas aumentaram apos
sua aparigdo de 2013 em
um episddio do Shark Tank,
no qual os jurados do
programa recusaram o

financiamento da startup.

no qual os jurados do
programa recusaram o

He did not set a figure for the cuts, saying they will be
made based on China's economic output.

Token:

Han satte ikke tall for
kuttene, og sa at disse ville
bli foretatt basert p& Kinas
gkonomiske produksjon.

2700ldnaB0GcaNFISLNMA0
287 (3917009WONCcSI9xS0loe
S9l5GulosunmdincsanzHoasg

Y,

Nior shocraigh sé figitr do na
giorrtchain, a ra go ndéanfar
iad bunaithe ar aschur
geilleagrach na Sine.

/C)ng dy da khong dua ra con
s8 cét giam, ma ndi rang
viéc d6 sé dugc thuc
hién dua vao két qua cua
nén kinh té Trung Qué’c./

Ve
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um episodio do Shark Tank,

financiamento da startup.
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Liberal criticism of the reconstruction effort has focused on the
awarding of reconstruction
contracts to perceived Washington insiders.

Token:

Liberal kritik af

insidere.

genopbygningsindsatsen
har fokuseret pa tildelingen

af genopbygningskontrakter
til betragtede Washington-

Liberal kritik av

Token: ed

A critica liberal sobre o
esforgo de reconstrugdo
focou na concessdo de
contratos de reconstrugdo a
pessoas com influéncia em
Washington.

[NnbepanbHas KpUTUKa yCUUIA |
0 BOCCTaHOB/EHUIO

cocpeaoToYmBanachb Ha TOM,

[ O Zipvop dNAwoe Nwg ol
NWANCEIG augnbnkav HeTa

TNV EUPAVIOT) TOU OE £va
£neloodio Tou Shark Tank To
2013 oT0 0Moio TO MAVEA TNG
EKMOUMNG apvnBnke va

XpnHaTodoTnoel TNV
\ enixeipnan. /

CumuHodd ckasan, 4Yto
npoAaxu BbIPOC/i/ Nocne
€ro nosiBNeHns B BbiNyCKe Woy
"Shark Tank" B 2013 roay, rae

UneHbl XKIOpU 0TKasanucb

[ Siminoff afirmou que as
vendas se

incrementaron despois
da sua aparicion en 2013 no
episodio Shark Tank, no que
o panel do programa

rexeitou financiar a empresa
emerxente.

D

Smirnoff sa att forsaljningen
okade efter hans medverkan

insiderpersoner.
/" Kputuka Ha nubepanute \
KbM OMUTUTE 3a

&teruppbyggnadsarbetet
har fokuserat p8
tilldelningen av
&teruppbyggnadskontrakt
till formodade Washington-

PEKOHCTPYKLMA

ce hokycrpa BbpXy

Bb3/1araHeTo Ha A0roBopu 3a
PEKOHCTPYKLMA Ha

npeanosioXnUTeslbHO UMELWUM
CBA3M C NPaBUTEIbCTBOM. /

YTO KOHTpPaKTbl Ha
BOCCTaHOBUTE/IbHbIE paGOTbI
OoTAaBaInCb

Liberal kritik av
8teruppbyggnadsarbetet
har fokuserat pd tilldelningen
av 8teruppbyggnadskontrakt
till formodade Washington-
insiderpersoner.

npegnonaraemMu

i ett avsnitt av Shark Tank

2013, dar panelen sa nej till
att finansiera startupen.

-

hu1HaHcMpoBaTh ero crapran.

BALUMHITOHCKM BbTPELLHU
\ nvua. /

Figure 6: Comparison of SONAR and MEXMA on translated tokens in translations.
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F.1 VERIFYING THE TOKEN ALIGNMENT QUALITY THROUGH SIMALIGN

Dataset | XLM-R | SONAR | LaBSE | MEXMA
Average | 56.90 70.66 67.53 73.03
eng-deu | 61.50 77.10 72.90 80.50
eng-fra | 71.20 89.20 84.40 91.50
eng-ces | 38.00 45.70 45.30 47.10

Table 35: SimAlign results using different models as backbone for the token-level alignment on
different language pairs.

Several approaches have showed that aligned tokens across languages lead to better performing
sentence representations (Li et all, 2023} [Cao et all, 2020} [Schuster et all 2019). In order to fur-
ther validate the improved alignment of our tokens, we use XLM-RoBERTa, SONAR, LaBSE and
MEXMA as the backbone for SimAlign (Jalili Sabet et al.},[2020). We test the models across 3 lan-
guage pairs, on the datasets reference in SimAlign, English-German [2005), English-French
Och & Ney| (2000) and English-Czech (2008). The alignment created by the models is
compared a reference word alignment to compute a F1 score. The results are provided in [Table 33]
and it is possible to see that the alignment created by MEXMA achieves better F1 scores. All results
were achieved using the itermax method, taking the word representations from the last layer of each
model.
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G ATTENTION DISTRIBUTION OVER TOKENS

In this section, we provide some examples of MEXMA and LaBSE’s attention probabilities given by
the CLS token to the word tokens. The examples are provided in Figures[7] [8] 0] and [I0] Across all
figures, it is possible to see that LaBSE tends to be more uniform across all tokens, while MEXMA
tends to focus more attention on a smaller subset of the tokens. All examples are taken from the
FLORES200 test set with the xsim++ extension, where some words in the original sentences are
replaced, and the models have to be able to still match the correct translation, and not a sentence
with a small change. From [Figure 7| to [Figure §| “nineteen” is replaced with “twenty nine”. From
[Figure 9|to|Figure 10fthe word “white” is replaced with “black”.

shows the attention placed by MEXMA and LaBSE on the same sentence in English and
Portuguese. It is possible to see that MEXMA in Portuguese places most of the attention in two
tokens, “governador” and ”19”, where the token in ”19” is very relevant here since it is the one
needed to distinguish the examples in xsim++. LaBSE seems to have many tokens with a lot of
attention, and does not have ”’19” as one of the tokens with the most attention.

In[Figure 8| we have the English example with nineteen (as previously shown in[Figure 7) compared
to the same sentence with nineteen replaced by twenty-nine. Interestingly, LaBSE places more

attention on the “##teen” token than the ’nine” token, but similar attention to the “twenty”, ”-” and
“nine” tokens. MEXMA places similar attention in all nineteen tokens, and in twenty nine it places
a small amount of attention on the irrelevant ”-”, with a higher degree of attention in “nine” and a
smaller amount of attention in “twenty”. MEXMA also seems to do a good job ignoring irrelevant

tokens like ”of”’, while LaBSE places a lot of attention in it.

has the same sentence in English and Portuguese, where, in xsim++ the models need to be
able to match the color ”white” instead of other colors. It is possible to see that, for LaBSE, white
is not one of the most relevant tokens in English, but for MEXMA it is, along with “television”.
In Portuguese the behavior is similar, the token “bran” in “esbranquicada” has a large degree of
attention from MEXMA, while for LaBSE is it not a token with a lot of attention, and ”¢ada” which
is a token that does not convey the idea of white, is the one with the most attention out of the 4 tokens
of the word, for LaBSE. In Portuguese it is also noticeable that MEXMA gives a small amount of
attention to most of the less relevant tokens, while LaBSE seems to have a lot more tokens with a
high degree of attention.

Figure 10]shows the same English sentence as|Figure 9] with the word white replaced with the word
black. Interestingly, MEXMA’s attention remains the same with black and white, while for LaBSE

the token “black” seems to get less attention than the token “white”. The remaining tokens get
similar attention in both models.

Additionally, provides a comparison for MEXMA and LaBSE with the probabilities of
all heads, and all tokens, using BertViz (Vig, 2019). It is possible to see that MEXMA places a lot
of attention on the EOS token, </s>, which is used as an attention dump, i.e. an irrelevant token
that receives a very large attention probability, a common phenomena in transformers, as explored in
Xi1ao et al.| (2024); [Darcet et al. (2024)); Sun et al.|(2024)). This happens frequently with MEXMA. It
is, again, possible to see the difference in uniformity for MEXMA and LaBSE, with LaBSE having
a more uniform attention in the figure. If we remove the BOS and EOS tokens from the entropy
computation, we now get an entropy of ~ 3.5 and ~ 3 for LaBSE and MEXMA, respectively.
MEXMA'’s entropy increases, while LaBSE stays mostly similar, which shows that MEXMA indeed
frequently uses the EOS token as a dump. However, MEXMA still has a lower entropy and a more
skewed distribution over its word tokens, with or without BOS and EOS, as shown by the lower

entropy and the Figures
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L 8 governor ! § offce [ wine e o e jured R poice oficers |
M: __The - r's --- nete en __of __the __in ju red -- __officer s I
1 0 gabinei do governador [RRRHON e 19 6N Ferdos [FR acentes poiciais |
M: _O|_gabinet ¢ _do IBONGHAG0N _afirmou _que ERB| _dos |_fer idos _eram __agentes _policiais |
Figure 7: Comparison of LaBSE and MEXMA'’s probabilities distribution over the tokens. In this

example, the models had to match the sentence with ”19” in Portuguese and English. LaBSE’s
entries are preceeded with ”L:”, and MEXMA’s with "M:”.

L: [The governor ' s office [Said nine #fteen f the injured R police officers |
M: __The - r's --- nete en __of __the __in ju red -- __officer s I
L: [ihe| governor ' § office [8id kwenty| § nine Bf the injured WEH police officers |

—The govemo r ' s office _said __twenty - i€ _of _the _in ju red |_were _police _officer 5]
Figure 8: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this

example, the models had to distinguish the sentence with ”19” and 29" in Portuguese and English.
LaBSE’s entries are preceeded with ”L:”, and MEXMA’s with "M:”

— teports _show [BHHRE s ke __coning _from _the [Lpl
L: Reportage ##ns televisiva s divalga fhm [ fum #aca es ##bran ##qui --I-I
M: __Report agens - vas __divulga m __a - a ca __es bran qui ¢ca da __sa indo __da -I
Figure 9: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this

example, the models had to match the sentence with “white” in Portuguese and English. LaBSE’s
entries are preceeded with ”L:”, and MEXMA'’s with "M:”

I 1 I B i 5

-------l plantl
ISTRIBHRIGH _repors _show [HBIGER _smo ke _coming _from _the | Lpla |

Figure 10: Comparison of LaBSE and MEXMA'’s probabilities distribution over the tokens. In this
example, the models had to distinguish the sentence with ”white” and “’black” in Portuguese and
English. LaBSE’s entries are preceeded with ”L:”, and MEXMA’s with "M:”
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[SEP]
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[SEP]
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Figure 11: Attention distribution of MEXMA and LaBSE across all heads, and all tokens. On the
left is LaBSE, on the right is MEXMA. MEXMA uses the EOS token as an attention dump, and has

a more skewed distribution, while LaBSE has a more uniform distribution.
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H BASELINE ARCHITECTURES

We report SONAR, LaBSE’s, DAP’s and RetroMAE’s architectures in Figures [T2b] [12a] and
[12d] respectively for easier comparison. LaBSE employs a slightly modified contrastive loss, to
increase separation, and SONAR is based on translation. DAP uses token-level objectives, but it
does not leverage them to update the sentence representation. RetroMAE uses the sentence in the
heavy unmasking, but that unmasking does not update the tokens outputted by the encoder, it is
monolingual, and the sentence representation does not come from an unmasked input. MEXMA is
based on cross unmasking and has direct token level gradients updating its internal representations.
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(c) DAP’s architecture. (d) RetroMAE’s architecture.

Figure 12: Architecture of the baselines.
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